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A new minimum zone method for flatness error analysis js proposed in this
article. Based on the criteria for the minimum zone solution and strict rules
for data exchange, a simple and rapid algorithm, called the control plane
rotation scheme, is developed for the flatness analysis of a flat surface. Experi-
mental work was performed, and some examples are given in terms of the

minimum zone and least-squares solutions.
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Introduction

Flat surfaces of any size, as embodied in the form
of surface plates and tables, are of considerable
importance in precision engineering, particularly as
reference surfacesm*“the inspection of engineering
components and as work tables for machine tools.
In order to assess the flatness error of any surface
plate, engineering measurements along a particular
reference plane using appropriate techniques are
generally made. The interpretation of the measured
data has been specified using many different stan-
dards, such as BS 308: part 3: “geometrical toler-
ance”' and ANSI Y14.5M.2 These specifications are
all based on the minimum zone concept appearing
in ISO/R1101,® which specifies form errors in gen-
eral. It states that an ideal geometrical feature must
be established from the actual measurements such
that the maximum deviation between the ideal and
the actual measurement concerned is the least pos-
sible value. The peak-to-valley distance of the devia-
tion data from the ideal geometrical feature thus
established is taken to represent the form error. The
orientation of the ideal feature can be regarded as
the alignment error in setting the reference plane
with respect to the measured plane.

Although the least-squares method,® because
of its simplicity in computation and the uniqueness
of the solution provided, is most widely used in
industry for determining flatness, it provides only
an approximate solution that does not guarantee
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the minimum zone value. Therefore, during the last
decade much research has been devoted to finding
the minimum zone solutions for flatness error and
other form errors using a variety of methods. Some
researchers applied the numerical methods of fin-
ear programming, such as the Monte Carlo method,
the simplex search and spiral search used by Mur-
thy,® the revised simplex search with dual problem
used by Chetwynd,® the minimax approximation al-
gorithm proposed by Fukuda,’ and the simplex
search technique adopted by Shunmugam.® An-
other approach has been to find the enclosing poly-
gon for the minimum zone solution, such as the
eigen-polyhedral method proposed by Hong,® the
convex polygon method presented by Lai,'® and the
convex hall theory given by Traband et al."" These
methods are all more or |ess similar in their compu-
tational conception, which dynamically reveals the
meaning of each search step from the distribution
of the data points. The MINMAX method proposed
by Fan,'? an algorithm, uses the concept of the rota-
tions of enclosing planes with respect to a particular
contact point at each data exchange step. This tech-
nique reduces the separation of the enclosing
planes step by step until the minimum zone is
found. The concept is comprehensive in both the
physical and engineering senses in regard to the
geometrical form of the investigated data.

The methods mentioned above generally pro-
ceed initially with the random selection of data
points and then follow with an iterative data ex-
change procedure. A longer computation time is
naturally required by this kind of approach in order
to reach the final minimum zone condition. Burde-
kin and Pahk' in their revision of the MINMAX
method, called the “enclose tilt technique,’” use the
least-squares result as the initial condition for the
analysis of the flatness error. This method, while
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providing an efficient method for reaching the mini-
mum zone solution, deals with all the measured
points, the so-called full field, during each data ex-
change process. This process can be improved by
screening out unwanted data points, which makes
the mathematical model simpler and the computa-
tion time even shorter.

We must first recognize that all the algorithms
so far developed for the minimum zone solution of
flatness error will guarantee an exact and unique
solution of the minimum zone value, which must be
smaller than the least-squares value. The computa-
tion times will be different depending on the com-
plexity of the mathematical model that each algo-
rithm employs. From an engineering point of view,
in practice the ability to understand the physical
meaning of the algorithm is more important than
the computation time of that algorithm, the compu-
tation of each algorithm being quite fast, even when
using a personal computer. In reality, some algo-
rithms are indeed difficult to understand because
they are purely numerical analyses or complex in
geometrical presentation. Therefore, the simpler
and clearer the algorithm, the more readily it will
be accepted by an inspector who needs to know the
flatness error from measured data. Practically, the
best algorithm should provide not only the simplest
model for aradysis, but should require the least
computational use of the computer. The develop-
ment of such an algorithm is the main objective of
this work.

This article presents a new minimum zone
method for the flatness analysis of any flat surface
investigated. A previous study by the investigators
of straightness analysis using the control line rota-
tion scheme (CLRS) was quite satisfactory." This is
an extended work from the CLRS to the control
plane rotation scheme (CPRS) for the purpose of
flatness evaluation. The data-exchange scheme
starts with a 1-1 model based on the least-squares
result. It then is followed by a 2-1 model search and
continued to either the 2-2 model or the 3-1 model
directed by the strict rule of the CPRS, which is
developed based on the criteria of the minimum
zone solution. With only a few steps of data ex-
change in 2-2 model or 3-1 model iteration, the mini-
mum zone solution can be obtained easily. A handy
method using the CPRS technique without the use
of a computer is also included.

Flatness analysis
Minimum zone criteria

The criteria for the minimum zone solution of flat-
ness error have already been verified and adopted
for use in numerous studies.’®'358 The following
conditions must be met in the final stages: (1) At
least four points must be in contact with the two
enclosing parallel planes in the form of a 3-1 model
(three points on the upper plane, one point on the
lower plane, or vice versa) or a 2-2 model (two
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actual surface

Figure 1 The minimum zone condition of the 3-1
model

actual surface

Figure 2 The minimum zone condition of the 2-2
model

points on the upper plane, two points on the lower
plane); (2) for the case of a 3-1 model, when pro-
jected onto the upper or lower plane, that single
contact point must be on the inside of the triangle
formed by the other three points as shown in Figure
1; or (3) for the case of a 2-2 model, when projected
onto the upper or lower plane, the line which is
linked by those two contact points of the upper
plane must be intersected by the line linked by the
other two contact points of the lower plane as
shown in Figure 2. The distance between any two
such enclosing planes defines the minimum zone
of flatness error. The corresponding mean plane is
regarded as the best-fit plane. The contact points
described here are called the control points and
the corresponding enclosing planes are called the
control planes. An interesting phenomenon should
be noted here. When considering a side view of the
deviation data from the direction generated by any
two control points of the same control plane (as
shown in Figures 3 and 4), the distribution of data
points will be directly coincident with the minimum
zone criteria of straightness, that is, three control
points in upper-lower-upper sequence or vice
versa.'*" This shows the correlation of minimum
zone solutions for straightness and flatness. The
mathematical models used to find the solution for
minimum zone flatness are described in the follow-
ing sections.

Mathematical models

1-1 Model. Before searching for a best-fit plane, .it_i5
best to find the least-squares plane as the initial
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Figure 3 Relationship between the 3-1 model flat-
ness criterion and the straightness criterion

X

Figure 4 Relationship between the 2-2 model flat-
ness criterion and the straightness criterion

condition of the search because in most cases it is
close to the best-fit plane.
Let the equation of the least-squares plane be

Z=aX+bY+c¢ M

where a, b, and ¢ are coefficients. Using the least-
squares method, the following sum is minimized:

N
E=73(Z ~aX - bY,~ c) (2)
i=1
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Figure 5 Construction of the 1-1 model from the
least-squares plane

where (X;, Y, Z) (i = 1,. . ., N)is the measured
data. Applying the variational principle, three equa-
tions can be obtained as,

N
(Z; — aX, — bY, — c)X,= 0 (3)
i=1
N
> (Z: - aX;, — bY, —¢c)¥;=0 (4)
iml
N
> (2 —aX, - bY,—c)=0 (5)

i=1
Therefore, three variables, a, b, and ¢, can be solved
by the modified Gauss elimination method. Thus,
the deviation 8Z; of the flatness data from the least-
squares plane can be defined as

8, =2; - aX;— bY; — ¢
for i=1,2,...,N (6)

where N denotes the total number of data points.
The highest of the data points with respect to this
least-squares plane is now defined as the upper
control point, and the lowest is defined as the lower
control point. A 1-1 model is thus established in
such a way that an upper control plane is generated
from the upper control point and a lower control
plane from the lower control point, with both planes
being parallel to the least-squares plane. Figure 5
illustrates a side view of deviation data from the y
axis. The equations of the two control planes en-
closing these data can be expressed as

Z,=aX + bY + ¢, (upper control plane) (7)
Z,=aX + bY + ¢, (lower control plane) (8)

where a, b, ¢, and ¢, are four coefficients to be
determined.

In order to define the two parallel pfanes of
unique slope that enclose all data points, it is neces-
sary to find at least four control points, Each of four
unknown unique coefficients must be determined.
The third and the fourth control points must be
found. A very strict rule of search scheme is pro-
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Figure 6 CPRS rule in half-field for 1-1 model: (a)
lower-upper condition; (b) upper-lower condition

posed in the following sections to ensure that the
solution is concise, rapid, and exact.

CPRS for 2-1 model. From the 1-1 model, two con-
trol points in association with two control planes
are obtained by the least-squares method. In order
to find the third control point, the CPRS is intro-
duced. This CPRS is similar in nature to the CLRS,
which was used for straightness analysis." The only
difference is that instead of concerning line data
and control lines, the CPRS deals with surface data
and control planes.

Consider a side view of deviation data with
respect to the least-squares plane. There are only
two 1-1 model conditions: lower-upper and upper-
lower positions of the control points, as shown in
Figure 6a and b, respectively. Each control plane
will be rotated in the specified direction to find the
third control point. This point, together with the
current two control points, will most likely form the
upper-lower-upper or lower-upper-lower condition.
Furthermore, if the space between two such control
planes is defined as the full field, during the rotation
each control plane will eventually find its own first
new contact point, which must be located within
the specified quarter field. In other words, only the
points within a specified quarter field will be inter-
sected by a particular control plane for the determi-
nation of a new contact point. This entire CPRS proc-
ess deals with data points in the half field only,
as shown by the shaded parts in Figure 6. In the
computer algorithm, those unwanted points can be
screened out automatically based on this concept,
_saving half of the computational time required by a
full-field search.’2"?

During the rotation of a particular control plane,
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Figure7 CPRS search from 1-1 model! to 2-1 model

any point within the corresponding quarter field
may become the first contact point, depending on
its position. Because each point within such a field
will correspond to a rotation angle of the control
plane, the first contact point must be the one having
the smallest angle with respect to the control plane.
In the case of a search in the upper quarter field
(Figure 7),1f we let £,,, be the deviation of the upper
control point from the reference plane, and £, the
deviation of point / from the reference plane, the
angle of rotation of the control plane from its initial
position to the position as it contacts with point/is

6, = sin" (——E"‘"LT E’) 9)

where L;is the distance from the upper control point
to point /. The first contact point / within this quarter
field will be found by

8, = minimum{#,} (10)

Similarly, in the lower quarter-field search, the
angle of rotation of the lower control plane from its
initial position to the position where it contacts any
point / in this field is
E.i— E
e,:sin*'(ﬂ%l) (11)

i

where £, represents the deviation from the lower
control point to the reference plane, £, the deviation
from point j to the reference plane, and L, the dis-
tance from the lower control point to point j.

The first contact point J within this quarter field
will be found by

6, = minimum{é} (12)

Although each control plane may generate its
own first point of contact during its own CPRS, only
one contact point is eventually needed to form the
2-1 model, Therefore, selection between points /
and J will be judged by the smaller value of 6, and
a,.

CPRS from 2-1 model to 3-1 or 2-2 model. To find the
fourth control point from the 2-1 model, consider a
side view of deviation data from the direction linked
by those two control points on the same control
plane (e.g., a side view from P, — P, as shown in
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Figure 8 CPRS search for the fourth control point

Figure 8). The CPRS method for the 2-1 model can
be applied again. The fourth control point (P,) is
also found in the half-field zone as described in the
2-1 model.

At this stage four control paints in association
with two control planes have been found conform-
ing to the first criterion of the minimum zone solu-
tion. Only two possible conditions will have occur-
red in- terms of these four control points, either in
the form of the 3-1 model or the 2-2 model.

If the final conditions at the current stage meet
the second or third criterion of the minimum zone
solution, as shown in Figures 1—-4, the job is com-
pleted. The coefficients (a, b, ¢) of the mean plane,
as expressed in Equation 1, can now be computed
according to the-curremt-muodel as follows.

3-1 model: Let points P(x,,y1.2;), Pslxaya2,),
and Pslx3¥3.2;), which are not on a single line, be
control points on the upper control plane, and
Py(x4.ys2s) be that on the lower control plane, as
shown in Figures 7 and 3. The coefficients a, b, and
¢ of the mean plane can be expressed as

e (z; — z3)ys = ya) = (23 = ZJly, — v

D,
(13a)
b= (Xz = xg,(zg 7 (xg e X;HZ; = 2';)
D,
(13b)
.- (z, + z,) — alx, ;x;) - bly, + ya! (13¢)
where D, = (x; — X3)y3 — Ya) — (X3 — x(yy — ya).

2-2 model: Let points Py(x,,¥,.2,) and Py(x,, y5.2,)
be control points on the upper control plane, and
Py(x3,y3.25) and Pa(x, yazs) be those on the lower
control plane, as shown in Figures 2 and 4. The
coefficients a, b, and ¢ of the mean plane can be
expressed as

_ (yy — vallzs — 2a) = (y3 = yllz, = 2))
D,

a

(14a)
(%3 — X M2y — 25) = (x; = X)z3 — 2,)
D,

b=

(14b)
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Figure 9 CPRS search for 2-2 model and 3
model: (a) lower-upper-upper condition in 3
model; (b) upper-upper-lower condition in 3-
model; (c) upper-upper-lower condition in 2
model: (d) lower-upper-upper condition in 2
model

(z; + 23) = alx; + x)) — bly, + i)
C -
2
where D, = (x3 — xa)(yy — y2) = by = X)ys — el

The equations of the two corresponding control
planes can also be obtained by Equations 7 and 8,
where

(14c)

¢, = z, — ax, — by, (15)
¢ =2z, — ax; — by, (16)

The minimum zone flatness error is then deter-
mined by the distance between these two control
planes.

However, if these four control points cannot
meet the second or third criterion of the minimum
zone solution, further CPRS procedures will be re-
quired.

CPRS for 2-2 and 3-1 models. When the four control
points of the current 2-2 or 3-1 model do not meet
the minimum zone criterion, four possible condi-
tions will occur, as illustrated in Figure 9. As indi-
cated earlier, when projecting the measured data
onto a particular side plane, the distribution of
control points will form the upper-lower-upper or
lower-upper-lower sequence. It is apparent that
none of the four existing conditions as shown in
Figure 9 will meet this requirement. The principle
of the data-exchange scheme, the CPRS method, is
to search for a new control point to replace one
of the current control points so that not only the
separation of the new control planes can be les-
sened but that the above-mentioned criterion also
can be met. The rule of CPRS is therefore both strict
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and essential. The direction of rotation of each con-
trol plane with respect to the corresponding control
point (or points) has been specified in Figure 9 for
each individual case. It is obvious that during the
rotation the point to be discarded must be the one
that violates the minimum zone criterion, as circled
in Figure 9. The remaining three control points will
form a 2-1 model, and the CPRS method for a 2-1
model can be applied. This procedure is iterated
until the minimum zone criterion is reached.

Algorithm of the computer program. The algorithm
of the computer program for the CPRS technique
can now be summarized as follows:

1. Read the data (X, Y, Z)
2. Determine the flatness data via the least-
squares method
. Construct the 1-1 model
. Apply the CPRS rule to form a new 2-1 model
. Apply the CPRS rule from the 2-1 model to a
3-1 or 2-2 mode|
6. Iterate the 3-1 or 2-2 model with the CPRS rule
until the second or third minimum zone crite-
rion is met
7. Qutput the result

(S -

Examples

There are several instruments available on the mar-
ket that can measure flatness of a flat surface, such
as the electronic level, autocollimator, laser interfer-
ometer, CMM, Fizeau or twyman-green interferom-
eter, and so on. Experiments can be performed
easily using appropriate instrumentation for any
surface being investigated. Some of the results of
this work are presented here. To demonstrate the
simplicity and clarity of the CPRS method from a
geometrical viewpoint, the first example, using sim-
ple data points, will be described in a step-by-step
manual approach. Other examples having more
data points are solved by the microcomputer.

Example 1: Step-by-step manual CPRS
approach

The unique significance of the CPRS method when
compared with all other existing methods®* " is its
strict rule of control-plane rotation. The least-
squares plane is only a reference for the construc-
tion of the 1-1 model. Because this method can
efficiently provide the optimum strategy for data
exchange, the reference plane can even be any
other plane passing through the data points. The
CPRS process can also be used without the com-
puter.

Figure 10 illustrates a series of procedures per-
formed manually with a pair of triangles and a pen
on graph paper with respect to the data points given
in example 1.'® The level data of this example are
listed in Figure 10a, where the number noted on
each lower left corner indicates the serial number
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of the corresponding data. Consider a side view of
all data points from direction Y, as shown in Figure
10b. A reference plane (P,,) can be drawn by linking
the two end points (1, 9), which is deemed the sim-
plest way to construct the reference plane. The cor-
responding control points (8, 4) and control planes
(P,.P) of the 1-1 model are determined accordingly.
Figure 10c shows the way to obtain the third control
point (6), which appears to have a smaller angle (,)
than that of point 1 (6,) after CPRS. The new 2-1
model is thus established.

To find the fourth control point, consider a side
view of the data points from the direction linking
control points 4 and 6 and then use the CPRS again,
as shown in Figure 10d. It is obvious that point 7 is
the correct one that, together with points 4, 6, and
8, form a new 3-1 model. Unfortunately, this 3-1
model does not meet the second criterion of the
minimum zone solution. Consider a side view from
the direction linking control points 6 and 7, as

z
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Figure 10 Graphical procedure of the CPRS search
(step length, 10 ¢cm; error, um): (a) raw data; (b)
1-1 model construction; {c) 2-1 mode! construction;
(d) 3-1 model construction; (e) data exchange from
3-1 model to 2-2 model; (f) final flatness data
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7 7 6 7 9
7 6 6 6 8
(a)
-2.43 -0.70 -0.98 -0.25 ~-0.52

0.52 1.25 0.98

1.48 1.20 0.93 0.66 1.39

2.43 i.16 -{. 11 -1.39 ~0.66

2,39 0.1 =1.16 -2.43 -1.70
(b)

Figure 11 Example 2 (step length, 10 cm; error,
um): (a) level datum; (b) minimum zone data

shown in Figure 10e. An application of the CPRS
will now discard point 4 and result in a new control
point (point 1) that, together with points 6, 7, and 8,
will form a new 2-2 model. This model conforms to
the third criterion of the minimum zone solution.
Thus, the minimum zone solution of this example
is finally obtained with respect to four control points
(1 and 8, 6 and 7), and two control planes (P,,P) in
the form of a 2-2 model. The exact flatness error,
estimated from the diagram to be 14.5, is computed
as 14.34, as shown in Figure 10f by Equations
14-16.

Examples 2 and 3: CPRS by computation

In example 1, an efficient procedure demonstrates
the simplicity and clarity of the proposed CPRS
method. However, it can only apply in the case of
simple data points. For most of the surfaces being
investigated, the data points are large, and the use
of a computer for analysis is necessary.

Example 2 is a set of points from Murthy and
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10.7 4.0 -2.69 -8.67 -13.63 -18.26 -22.04 -25.43 -28.58 -31.71
[ K1} 1.90 -5.00 -11.0% -16.19 -20.70 -24.50 -28.11 -30.99 -33.68
€.31 -0.62 -7.77 -14.0 -19.10 -21.86 =-27.90 -31.66 -J4.67 -37.13
4.0F =317 -10.22 -16.65 ~21.86 -26.55 -30.64 -M.52 -J7.59 -39.62
1,91 -5.24 =12.29 -1B.53 =24.09 -28.91 -3).22 -37.05 -39.99 -41.96

0.80 -6.65 =13.91 -20.56 -26.03 -31.11 -35.5] =-39.16 -41.96 -43.41

0.00 =7.38 =14.66 -21.10 =26.53 -31.42 =35.87 -39.2¢ —42.08 -43.93

(a)

1.17 ~0.84 =-1.95 -2.02 -1.77 -0.67 0.82 2.55 4.8
0.97 -L.1) -2.24 -2.83 -2.17 -1.08 ©0.18 2.19 4.38
0.2¢ -1.83 -1.20 -1.)9% -)28 -2.44 -1.01 0.56 2.98
-0.06 -2.23 -3.78 —4.10 -1.%2 -3.13 -2.12 9.0 L83
<0.07 -2.24 -1.61 —4.29 —4.22 -1.66 -2.60 ~0.66 .M
0.56 -1.84 =3.59 —4.18 .38 -3.91 -2.67 -0.59 2.85

1.88 -0.52 -2.07 -2.63 -2.63 -2.21 -0.69 1.35 4.38

frimee {

Figure 12 Example 3 (step length, 10 cm; error,
um): (a) level datum; (b) minimum zone data; (c)
minimum zone surface profile

Abdin.® Figure 11a tabulates the level datum of ex-
ample 2. With only one CPRS process, the minimum
zone solution was readily found. Four control points
(6 and 20, 4 and 21) in the form of a 2-2 model can
be clearly seen in Figure 11b, with a flatness error
of 4.864.

A granite surface plate in the laboratory was
calibrated by the use of an electronic level that was
linked to an IBM PC/AT via an A/D converter. The
measured level datum, listed in Figure 12a, was
adopted for use by example 3. The minimum zone
condition was found in the form of a 3-1 model
as shown in Figure 12b and ¢, in numerical and
graphical forms, respectively.

Table 1 shows a comparison of the results of
these three examples by the CPRS and least-
squares methods. It is evident that the minimum
zone solution always yields smaller errors.

Conclusions

A new and comprehensive method for the minj-
mum zone solution of flatness error is proposed in
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Table 1 Comparisons of the least-squares and the minimum zone results of the three given examples

Example 1 Example 2 Example 3
Coefficient Lsa CPRS LSQ CPRS Lsa CPRS
a 0.03 0.14 0.10 0.13 -0.48 -0.49
b 0.15 0.37 0.00 -0.01 0.22 0.21
c 1.88 -0.27 5.24 4.61 -5.82 -4.38
Flatness 16.48 14.34 5.90 4.86 8.21 8.76

LSQ, least-squares method; CPRS, minimum zone method; step length, 10 em; error unit, micron

this article. This technique, due to its strict CPRS
rules for data exchange, provides a concise and
rapid means for reaching the minimum zone solu-
tion. From many applications, it is apparent that
only one or two CPRS searches are required to reach
a final solution. This method is certainly a useful
tool for flatness analysis.

In practice, although the step length being se-
lected does not affect the computed flatness errors,
it does affect the calibrated grade of the inspected
surface. The selection of a proper step length rela-

ive 1o the size of the surface plate is therefore very
important in practical use.

References

1 “Geometrical tolerance,” BS 1972, 308, part 3

2 Dimensioning and tolerancing for engineering drawings,
ANSI Y¥14.5M, 1982

3 Technical drawings—geometrical tolerancing, ISO/R1101,
1983

4 Miller, M. Engineering Dimensional Metrolegy. London, Ed-
ward Arnold Co., 1862

5 Murthy, T. 5. R. and Abdin, §. Z. “Minimum zone evaluation
of surfaces,” /nt J Mach Tool Des Res 1980, 20, 123-136

32

12

13

15
16

Chetwynd, D. G. Applications of linear programming to engi-
neering metrology. Proc Instn Mech Eng 1985, 199, 93-100
Fukuda, M. and Shimokohbe, A. Algorithm for form evalua-
tion methods for minimum zone and least squares. Proceed-
ings of the International Symposium on Metrology for Qual-
ity Production, Tokyo, 1984, pp. 197-202

Shunmugam, M. S. "Comparison of linear and normal devi-
ations of forms of engineering surfaces,” Prgc Eng 1987, 9,
96-102

Hong, J. T. An algorithm for flatness calculation from geo-
metrical viewpoint, M.Sc. thesis, National Taiwan Univer-
sity, 1987

Lai, K. and Wang, J. A computational geometry approach to
geometric tolerancing. 16th NAMRC, 1988, pp. 376-372
Traband, M. T., Joshi, S., Wysk, R. A. and Cavalier, T. M.
“Evaluation of straightness and flatness tolerances using
minimum zone," Manufacturing Rev 1983, 2, 189-1395

Fan, K. C. Computer-aided calibration of the accuracy perfor-
mance of NC machine tools, Ph.D. thesis, Univ. of Manches-
ter Inst. of Science and Technology, Manchester, UK, 1984
Burdekin, M. and Pahk, H. J. The application of a microcom-
puter to the on-line calibration of the flatness of engineering
surfaces. Proc Instn Mech Eng 1989, 203, 127-137

Huang, 8. T, Fan, K. C. and Wu, J. H. A new minimum zone
method for evaluating straightness errors” (submitted for
publication)

“*Surface plate,” 85 1983, 817

Li, C. Fundamentals of the Interchangeability and Measure-
ment Technology. Peking. Metrology Publisher, 1984

JANUARY 1993 vOL 15 NO 1



